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ABSTRACT

The majority of existing computational tools rely
on sequence homology and/or structural similarity
to identify novel microRNA (miRNA) genes. Recently
supervised algorithms are utilized to address this
problem, taking into account sequence, structure
and comparative genomics information. In most of
these studies miRNA gene predictions are rarely
supported by experimental evidence and prediction
accuracy remains uncertain. In this work we present
a new computational tool (SSCprofiler) utilizing a
probabilistic method based on Profile Hidden
Markov Models to predict novel miRNA precursors.
Via the simultaneous integration of biological fea-
tures such as sequence, structure and conservation,
SSCprofiler achieves a performance accuracy
of 88.95% sensitivity and 84.16% specificity on a
large set of human miRNA genes. The trained clas-
sifier is used to identify novel miRNA gene candi-
dates located within cancer-associated genomic
regions and rank the resulting predictions using
expression information from a full genome tiling
array. Finally, four of the top scoring predictions
are verified experimentally using northern blot anal-
ysis. Our work combines both analytical and exper-
imental techniques to show that SSCprofiler is
a highly accurate tool which can be used to iden-
tify novel miRNA gene candidates in the human
genome. SSCprofiler is freely available as a web ser-
vice at http://www.imbb.forth.gr/SSCprofiler.html.

INTRODUCTION

MicroRNAs (miRNAs) belong to a recently identified
group of the large family of noncoding RNAs (1).

The mature miRNA is usually 19–27 nt long and is
derived from a larger precursor that folds into an imper-
fect stem-loop structure. The mode of action of the
mature miRNA in mammalian systems is dependent
on complementary base pairing primarily to the
30-UTR region of the target mRNA, thereafter causing
the inhibition of translation and/or the degradation of
the mRNA.

According to recent estimates, while over 30% of ver-
tebrate genomes is transcribed (2), only 1% consists of
coding genes, suggesting that the rest must be various
types of noncoding RNA genes. In addition, 701 human
miRNA hairpin sequences are currently contained in the
miRNA registry (miRBase, release 12.0), of which 92%
have been experimentally verified, and it is anticipated
that there may be thousands more. A recent estimate of
the total number of miRNA genes in the human genome
provided by the study of Miranda et al. (3) is in the range
of �55 000, a number significantly larger than the exper-
imentally verified human miRNAs currently in the regis-
try. Searching through the entire genome of human and/or
other species for novel miRNA genes is a complicated task
for which fast, flexible and reliable identification methods
are required. Currently available experimental approaches
working towards this goal are complex and sub-optimal
(4). Inefficiencies result from various sources, including
difficulty in isolating certain miRNAs by cloning due to
low expression, stability, tissue specificity and technical
difficulties of the cloning procedure while selecting the
right genomic region to investigate is often a very challen-
ging task of its own. Computational prediction of miRNA
genes from genomic sequences is an alternative technique
which offers a much faster, cheaper and effective way of
identifying putative miRNA genes. Moreover, by predict-
ing the location of miRNA genes, these methods enable
experimentalists to concentrate their efforts on genomic
regions more likely to contain novel miRNA genes, thus
facilitating the discovery process.
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Accurate prediction of new miRNAs requires the con-
sideration of certain characteristic properties of these
molecules based on either experimental (5–7), or compu-
tational evidence (8–12) which can be used to build a
classification scheme or predictive model. These general
features include sequence composition, secondary struc-
ture and species conservation. MiRNA gene prediction
can be achieved via the use of supervised algorithms that
are trained on known miRNA biological features and
then used to identify putative miRNAs, or un-supervised
algorithms such as alignment or conservation. The predic-
tion methodology can also vary significantly between
different studies. It can be performed by: scanning for
hairpins within sequences that are conserved between clo-
sely related organisms like Caenorhabditis elegans and
C. briggsae (10,13), looking for regions of homology
between known miRNAs and other sites within aligned
genomes, as for example between human and mouse (14)
or looking for conserved regions of synteny—conserved
clustering of miRNAs in the genomes of closely related
organisms (14). Profile-based detection (15) and secondary
structure alignment (16) of miRNAs have also been sug-
gested using sequences across multiple, highly divergent,
organisms (i.e. mouse and fugu). Support vector machines
that take into account multiple biological features such as
free energy, paired bases, loop length and stem conserva-
tion have also been used to predict novel miRNAs
(8,9,17). Many of these prediction methods undertake a
pipeline approach, whereby cut-offs are assigned and
sequences are eliminated as the pipeline proceeds (10,13).
The drawback of these approaches is that they lose
numerous true miRNAs along the line due to stringent
cut-offs. Other approaches use homology to detect novel
miRNAs based on their similarity to previously identified
miRNAs (14–16). These methods obviously fail when
scanning distantly related sequences and when novel
miRNAs lack detectable homologs. Two studies (12,18)
used Hidden Markov Models (HMMs) and Bayesian clas-
sifiers, respectively, to simultaneously consider sequence
and structure information for the identification of
miRNA precursors (pre-miRNAs). However, conserva-
tion information, a very important characteristic of the
majority of miRNA precursors, was not integrated in
those algorithms. Finally, in a more recent study (19),
an HMM approach that simultaneously considered struc-
ture and conservation features of miRNA genes was
shown to achieve very high performance on identifying
miRNAs in the human genome.

In addition to computational tools, large scale, high
throughput methods such as tiling arrays or deep sequenc-
ing have recently been used for the identification of novel
miRNA genes (20–22). These methods are particularly
useful as they can provide a very sophisticated and accu-
rate expression map for small RNAs in the genome.
Moreover, if such data is coupled to computational
tools, it can facilitate rapid and precise detection of
novel miRNAs, while at the same time giving greater cre-
dence to computational predictions.

MiRNAs have been suggested to play a key regu-
latory role in numerous processes, including cancer
(23,24). For example, the expression levels of let-7 (25),

miR-15a/miR-16-1 cluster (26) and neighboring miR-143/
miR-145 (27), are found to be reduced in some malignan-
cies, while other miRNAs such as the miR-17-92 cluster
(28–30) and miR-155/BIC (31), are overexpressed in var-
ious cancers. Additionally it was recently shown that a
high percentage of miRNA genes are located in cancer-
associated genomic regions (CAGRs), thus implicating
miRNAs in tumorigenic events (32). CAGRs take the
form of (i) minimal regions of loss of heterozygosity
(LOH), suggestive of the presence of tumor suppressor
genes; (ii) minimal regions of amplification, suggestive of
the presence of oncogenes; and (iii) common breakpoint
regions in or near possible oncogenes or tumor suppressor
genes. The identification of novel miRNA genes within
these regions is very important as it may reveal putative
gene players that exert a regulatory effect on different
types of cancer, contribute to the better understanding
of molecular pathways responsible for oncogenesis and
provide potential targets for therapeutic intervention.
In this work, we present an efficient and freely available

prediction tool (SSCprofiler) where Profile HMMs are
trained to recognize key biological features of miRNAs
such as sequence, structure and conservation in order
to identify novel miRNA precursors. We first use our
method to learn with high accuracy the characteristic fea-
tures of 249 human miRNA precursors and then apply the
trained model on CAGRs in search of novel miRNA
genes. Predictions are ranked according to expression
information from a recently published full genome tiling
array (21) and the top four scoring candidates are verified
experimentally using northern blot.

MATERIALS AND METHODS

Datasets

The sequences of human pre-miRNAs used to train
and test the HMMs were downloaded from the
miRNA registry (version 12.0) (http://microrna.sanger.
ac.uk/sequences/). For the training/validation sequences
BLASTclust (33) was initially performed to cluster all
miRNA sequences into groups by precursor similarity
and the most conserved member (according to multiz
files) was used to represent the cluster. This procedure
was done to eliminate redundant pre-miRNAs and avoid
over-representation of similar miRNA precursors.
Following a set of filtering criteria detailed below, a
total of 249 sequences (originally listed in version 8.0)
were used for training/validation while a total of 219
sequences (not in version 8.0) were used as a blind test
set. The negative miRNA sequences were derived from
30-UTR regions of the human genome (release—May
2004) since no true miRNA has yet been reported to
reside within these regions. They were generated by
using a sliding window of 104 nt, shifted 11 nt at a time,
over the 30-UTR regions. RNAfold was executed for every
shift and the free energy of the secondary structure was
noted. Only sequences whose energy did not exceed a
threshold of –14.44 kcal/mol and had at least 14% of
their nucleotides conserved, were selected. This generated
over 35 000 negative sequences.
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Biological features

SSCprofiler takes into account three different biological
features: sequence, structure and conservation of
miRNA precursors. In this study, conservation was
retrieved from the multiz (34) full genome alignment files
of the human May 2004 hg17 genome assembly and seven
other vertebrate genomes: Mouse May 2004 (mm5), Rat
June 2003 (rn3), Dog July 2004 (canFam1), Chicken
February 2004 (galGal2), Fugu August 2002 (fr1),
Zebrafish November 2003 (danRer1). Chimp data were
not included due to high percentage similarity (�95%)
with humans. RNA secondary structure prediction was
performed using the RNAfold function of the Vienna-
RNA (35) package. A fixed window (104 nt) was used to
align all sequences in order to generate a multiple
sequence alignment (msa) required to train the HMM
(see Training and Validation of the HMMs). This was
achieved by enlarging sequences that fell shorter than
this window using flanking genomic nucleotides and trim-
ming sequences that exceeded the defined msa window.
The window length was consequently used as the length
of the training model and as the window size for querying
genomic sequences.

Filtering

To minimize the search space and reduce computational
load, the data were first filtered using various secondary
structure features of miRNA precursors. Filtering results
were displayed as histograms that show the relative dis-
tributions of the positive and negative data with respect to
eight features:

(i) Hairpin—the number of hairpins
(ii) Bulges—the number of bulges
(iii) Loops—the number of loops
(iv) Asymmetry—difference in loops+bulges on either

side of the hairpin.
(v) Bulges-loops—sum of loop and bulge count
(vi) Hairpin length—length of the hairpin
(vii) Folding min energy—min energy as defined by

RNAfold
(viii) Conservation—according to multiz full genome

alignment files

Illustration of data distributions for the various filtering
parameters was done to facilitate the filtering process by
enabling the adjustment of cut-off values according to the
specific dataset. Cut-off values for each of these features
are modifiable both prior and after the training procedure
(see ‘Results’ section, Figure 4).

Combining sequence, structure and conservation

In order to simultaneously consider multiple biological
features, a 16 character code was developed that integrates
sequence, structure and conservation information for
every nucleotide position in a given genomic sequence.
Specifically, each position in the genomic sequence is
replaced by 1 of 16 letters, depending on three factors:
(i) Sequence (A, C, U, G), (ii) Structure, (M=match,

L= loop) and (iii) Conservation (�=conserved,
‘‘=not-conserved) as detailed in Table 1.

Profile HMMs

The HMMER (36) software package was used to build a
HMM capable of predicting RNA or DNA Profiles.
HMMs are generative probabilistic models which are fre-
quently used to address serious theoretical problems. For
correct statistical inference, it is necessary to be able to
calculate a probability distribution P(S|M) for the proba-
bility of sequences S given a modelM, and have this quan-
tity sum to one over the ‘space’ of all sequences.
Generative models work by recursive enumeration of pos-
sible sequences from a finite set of rules—rules that in an
HMM are represented by states, state transitions and
symbol emission probabilities. HMMER uses a Profile
HMM architecture called Plan 7 which is illustrated in
Figure 1. Profile HMMs are statistical models of multiple
sequence alignments. They capture position-specific infor-
mation about how conserved each column of the align-
ment is, and which residues are most likely.

Training and validation of the HMMs

Machine learning algorithms such as HMMs require care-
fully chosen training and validation data sets in order to
achieve maximum performance. SSCprofiler allows for a
user-defined partitioning of imported data into training
and validation sets in order to perform a boosting valida-
tion. This is done by randomly dividing the positive data
into K subsets, some of which are used for training and
others for validation. The negative data is only used for
validation purposes and is not included in the training
sets. This partitioning is repeated 100 times and an
average validation performance is reported. The train-
ing/validation results are displayed as sensitivity and
specificity plots in order to obtain an indication of how
well the trained HMMs perform on the specific dataset
(Supplementary Figure S1). The x-axis of these plots dis-
plays the HMM score threshold and the y-axis is the aver-
age sensitivity and specificity for every score over the 100
validation runs. Training is performed on the biological
feature(s) selected before hand. An overview of the train-
ing procedure is shown schematically in the flowchart of
Figure 2. At the end of the training/validation procedure
all true miRNAs are combined to train a final model
which is subsequently used for scanning genomic regions.
The HMM score at which average sensitivity and specifi-
city values are ‘optimal’ can be selected by the user and it

Table 1. The 16-letter code that was used to integrate sequence,

structure and conservation information

Conservation and structure Sequence

A C G U

�M L M N P
‘‘M C D E F
�L Q R S T
‘‘L G I H K
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is used as a cut-off or threshold for classifying sequences
as positives (true miRNAs) or negatives.

Assessing the expression level of predicted candidates
using tiling array data

To provide additional support for computational predic-
tions, SSCprofiler enables the detection of regions in the
candidate(s) that are expressed in HeLa and/or HepG2
cells according to the recently published full genome
tiling array that provides an expression map at 5-nt reso-
lution in these two cell lines (21). SSCprofiler allows for
the expression threshold to be adjusted ranging from 1 to
2000 in order to retain candidates which exceed a given

expression cut-off. For the results reported here, a value
of 200 was used as a cut-off.

Scanning genomic regions for profiles

The process of scanning genomic regions for miRNA
precursor profiles involves six steps, illustrated in
Figure 3. Step 1: A sliding window of selected length is
passed along the genomic sequence shifting 1 nt at a time.
Step 2: For every window shift, sequence structure and
conservation information is retrieved according to the
selected training features; i.e. structure prediction is per-
formed and conservation is obtained from the multiz files.
Step 3: Each sequence within the sliding window is passed
through the filters utilizing the pre-defined filtering param-
eters (i.e. hairpin length, asymmetry). Step 4: For each
sequence, the features used during training (sequence,
structure and/or conservation) are generated according
to the 16-letter key described earlier. This allows the
simultaneous consideration of information for every
nucleotide position in the genomic sequence. Step 5: The
trained HMM is used to assign a likelihood score to each
genomic sequence within the sliding window. The HMM
score threshold can be selected by the user. It is usually
defined as the score where sensitivity and specificity from
the training/validation process were optimal. Step 6:
Candidates that overlap by �50 nt were grouped and the
candidate with the highest score is used to represent the
cluster. Thereafter, the candidates are assessed according
to their expression in HeLa or HepG2 cells using tiling
array data.

RNA extraction and northern blot analysis

Total RNA was extracted from HeLa cells grown in cul-
ture using Trizol. Eighty micrograms of total RNA
was analyzed on a 15% denaturing polyacrylamide gel
containing 8M urea and transferred to Nytran N mem-
brane (Schleicher & Schuell, Germany). Membranes were
probed with standard DNA oligonucleotides, complemen-
tary to both polarities. Due to the difficulty in predicting
accurately the location of the mature on the pre-miRNA,

Figure 1. The HMMER Plan 7 architecture. Squares indicate match states (modeling consensus positions in the alignment). Diamonds indicate insert
states (modeling insertions relative to consensus) and special random sequence emitting states. Circles indicate delete states (modeling deletions
relative to consensus) and special begin/end states. Arrows indicate state transitions. Figure was adopted from Eddy SR, 1998.

Figure 2. The supervised procedure of training HMMs for miRNA
precursor identification. Biological features of miRNA biogenesis and
conservation across other organisms are used as input for training.
Initially, secondary structure prediction is performed using the program
RNAfold. Every nucleotide position is henceforth represented by an
‘M’ for match and an ‘L’ for loop. This information is aligned with
conservation and sequence information for every nucleotide position.
The 16-character code shown in Table 1 is then used to represent each
position in this alignment with a single letter. The resulting strings of
characters for true miRNAs are aligned with respect to their hairpins
and used as a training set for the HMM. Once trained, the HMMs, can
be utilized to analyze sequences of desired length and assign a like-
lihood score. The higher the score the greater the chances of a candi-
date sequence being a true miRNA precursor.
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we select both stem sequences (maximum size 50 nt) from
the stem-loop structure of the miRNA gene candidates
(Table 2). Ten picomoles of each oligonucleotide probe
was end-labeled with [g-32P]ATP by using T4 polynucleo-
tide kinase. Pre-hybridization of the filters was carried out
in 7% SDS, 5� SSC, 1� Denhardt’s solution and 0.02M
Na2HPO4 pH 7.2. Hybridizations were performed in the
same solution at 508C after the addition of the radiola-
beled DNA oligonucleotide. Followed an overnight hybri-
dization, the membranes were washed at 508C in low
stringency buffer [2� SSC, 0.3% SDS] twice for 30min
(37). The membranes were stripped by washing in a high
stringency buffer (0.1� SSC and 0.5% SDS) for 30min
at 808C and reprobed with the negative polarity
oligonucleotides.

RESULTS

Learning characteristic features of human precursor
miRNAs

Human miRNA precursors from the RNA registry ver-
sion 12.0 were used to assess the performance accuracy
of the SSCprofiler while over 35 000 negative miRNA
sequences were used for evaluation purposes (see
‘Materials and Methods’ section). Negative sequences
were hairpin structures derived from 30-UTR regions.
These regions were selected because they have not yet
been documented to contain miRNA genes. To obtain a
reliable control set, negative sequences were filtered
according to free energy and conservation criteria
(see ‘Materials and Methods’ section) to ensure their
resemblance with true pre-miRNAs in both structure
and conservation. Prior to training, all positive and
negative examples were filtered as follows: initially, filter-
ing exclusively by a minimum energy threshold of
�25.44 kcal/mol resulted in 258 true miRNAs and

�8000 negative sequences. Consequently, seven additional
filtering parameters were used to further eliminate false
positives. Figure 4 shows the histogram distributions of
the sequences prior to filtering as generated by the
SSCprofiler interface with respect to three filtering param-
eters: Hairpin Length, Asymmetry and Bulges-Loops.
Similar distributions were generated for all eight filtering
parameters in order to determine the respective cut-off
values that were optimal for discriminating true miRNA
genes from negative data. Sequences were only retained
if they met the following criteria:

(i) Hairpin=1
(ii) Bulges �16
(iii) Loops �32
(iv) Asymmetry �13
(v) Bulges-loops �37
(vi) Hairpin length �16
(vii) Folding min energy ��25.44 kcal/mol
(viii) Conservation �25% of nucleotides conserved

The above-mentioned filtering procedure resulted in 249
true miRNAs and 2330 negative sequences. Subsequently,
HMMs were trained solely on the true miRNAs using
a 5-fold (three-fifths for training, two-fifths for validation)
boosting validation procedure (as described in the
‘Materials and Methods’ section). The procedure was
repeated for different combinations of biological features
and the HMMs average performance accuracy was
reported for each case. ROC curves showing the average
validation performance of HMMs that utilize all possible
combinations of sequence, structure and conservation
information are shown in Figure 5. There was a significant
improvement in prediction accuracy for the validation set
when certain features were combined, highlighting the
importance of simultaneously incorporating additional
biological information during the training procedure.

3. Filtering:  keep 
sequences that 
pass all 
thresholds. 

5. Query the trained 
HMM: keep only
sequences that 
pass the threshold 

1. Input: Genomic 
Sequence within 
sliding window of 
specified length. 

4. Combine Training Features
a. Sequence
b. Structure 
c. Conservation 

2. Information retrieval: 
a. Structure prediction 
b. Conservation retrieval  

6. Check for 
expression: use tiling 
data from HeLa 
and/or HepG2 cells

Figure 3. Flowchart of the scanning procedure.

Table 2. DNA oligonucleotides

Oligo stem 1 Oligo stem 2

Candidate 1 50-ACCTCTCCCCCTGCCAGGTTCCACCAGGGGACACCGTGTGTGT-30 50-CGAGCAGGGCTCCCCCACCTGAGTACCTGACCATGGGCTTTGGAGAGGC-30

Candidate 2 50-TACGCCCACAGCCCCCAGGCCCCCGAAGACAGGTGTCATGGA-30 50-TCCAAGAGCATCAAGCAGCAGGGGCTGGGGGAGCCAGCAGG-30

Candidate 3 50-ATCTACCAGGTCCTGGGCTTCGGGCCGCGTTCCCAAGGCAAGC-30 50-ACCCGCGGCGAGGACACGGCCGACCGCCCGCCTGCGCCC-30

Candidate 4 50-GCCCAGGAGGAGGTGGCACATCTGGGCTCCAGTCCTCGCAC-30 50-GTGCGGGCACCGCGCGAGCCTCGCCCCTTCCCACCTGCGC-30
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Figure 4. Histograms of the distributions of human miRNA (Red–Positive) and negative sequences (Blue–Negitive), as displayed by SSCprofiler.
Only three of the eight filtering parameters are shown here. (A) Hairpin length, (B) Asymmetry and (C) Bulges-loops count. Looking at the
distributions of positive and negative data, it is possible for the user to select cut-offs that separate the two distributions which can be used for
filtering the data.
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The best results were obtained when all three features were
used to train the HMMs, achieving on average 88.95%
sensitivity and 84.16% specificity in the validation set
for a score threshold of 3 (Figure 5 and Supplementary
Figure S1). Once a good performance on the training/vali-
dation sets was achieved, all 249 true miRNA precursors
were pooled together and used to train the final HMM
taking into account the same feature combination and
filtering parameters. This final model was used to build
the scanning interface of the SSCprofiler.
To demonstrate the ability of SSCprofiler to generalize

on unseen data we used 373 recently identified miRNAs
from miRBase version 12.0 that were not contained in our
training/validation sets. Of these, 219 precursors passed
the SSCprofiler filters. Table 3 shows the classification
performance obtained by SSCprofiler on the 249 train-
ing/validation and 219 unseen test precursors for different
HMM thresholds. Classification of the 219 unseen precur-
sors was performed using the scanning interface of
SSCprofiler and precursors were considered as ‘identified’
by the model if a significant hit was observed at their
respective genomic coordinates. For this reason we only
report prediction accuracy for the test set. As evident from
the table, generalization performance is maximum for an
HMM threshold of 1.

Predicting miRNA genes in cancer-associated genomic
regions (CAGRs)

According to Calin et al. (32), there is a large probability
that cancer-associated genomic regions contain miRNA
genes. This hypothesis is based on the finding that at
least 98 known miRNA genes reside in CAGRs, including
80 miRNAs that are located exactly in minimal regions of
LOH or minimal regions of amplification described in a
variety of tumors such as lung, breast, ovarian, colon,
gastric and hepatocellular carcinoma, as well as leukemias
and lymphomas. To investigate this hypothesis, we used

the final trained SSCprofiler to search for novel miRNA
candidates within these regions. Both positive and nega-
tive DNA strands were scanned for a number of regions
which represent over 350 MB of the human genome and
are known to be deleted or amplified in over 20 different
types of cancers (Supplementary Table S1). Filtering para-
meters and conservation retrieval were the same as
described in the previous section. The scanning procedure
(see Materials and Methods section, Figure 3) lasted �8
days (real-time) using a parallel PC cluster with 10 dual
opteron processors. An example of the SSCprofiler output
for this scanning is shown in Supplementary Figure S2.
Figure 6 shows the conservation of all predicted miRNA
candidates for an HMM threshold of 3. As shown in
Figure 6A, the majority of predicted miRNA candidates
had a high degree of conservation (over 50%) across the
seven different species. Moreover, the conservation for
each nucleotide position along the 104–nt long predicted
sequence dropped significantly near the loop.

Identification of the 98 known miRNAs in the CAGRs
regions that were scanned was assessed as a function of the
HMM score as shown in Table 4. As expected, the number
of miRNA gene candidates decreases with increasing
HMM score. Consequently, as the HMM score becomes
larger, the sensitivity drops while the specificity increases.
According to the training and testing procedures discussed
previously, the HMM score threshold for which both
sensitivity and specificity values were maximized ranged
between 1 and 3 (Table 3). However, when scanning
large genomic sequences multiple false positives tend to
accumulate, even for an average specificity value of
�85% (threshold of 3). Since experimental verification
is an expensive and time consuming process, we chose
candidates attaining a significantly higher HMM score
in order to obtain the most probable miRNA gene
candidate.

Experimental verification of top scoring candidates

According to sensitivity and specificity measures, the pre-
diction accuracy of SSCprofiler with respect to the identi-
fication of novel miRNA genes is very high. However,
these statistical evaluation criteria depend highly on the
specific data sets used to train and evaluate the computa-
tional model. Experimental verification of predicted
miRNA genes is the optimal way to assess the model’s
performance. Towards this goal, we experimentally vali-
dated a few of our top scoring precursor candidates.
The HMM threshold score for selecting these candidates

Figure 5. ROC curves for all possible combinations of sequence (Se),
structure (St) and conservation (Co) features for the validation set
averaged, over 100 repetitions. As evident from the figure, the area
under the curve is maximized when all three features are combined.
Note that conservation alone significantly outperforms sequence, struc-
ture and sequence+structure (SeSt).

Table 3. SSCprofiler prediction accuracy on validation and blind test

sets for three different thresholds

Threshold Validation Test

Sensitivity (%) Specificity (%) Pred. Acc (%)

3 88.95 84.16 72.15
2 90.07 81.77 78.08
1 91.3 78.9 85.84
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was set according to the following criteria: (i) high enough
to decrease the number of false positives and at the same
time and (ii) low enough to capture many of the true
miRNAs. A threshold of 21 was finally selected, at which
421 candidates were predicted with 65.31% (64/98) accu-
racy for the true miRNAs. At this threshold, the predicted
list included candidates with only partial conservation
when compared to higher scoring candidates. The expres-
sion of all 421 candidates in HeLa and HepG2 cells was

assessed using recent data from a full genome tiling array
(21) which provides a small-RNA expression map. A total
of 38 candidates whose expression at the stem region was
above a threshold of 200 were retained (see tinted grey
in Table 4). Of these, only 20 were expressed in HeLa
cells. The top four of these 20 candidates, according to
their expression value (listed in Table 5), were tested exper-
imentally using northern blot analysis on cultured HeLa
cells (see ‘Materials and methods’ section for details).

Table 4. Predicted miRNA genes as a function of the HMM score

HMM
score (�)

Candidate
precursors

Identified true
precursors/total
true precursors

Candidates exceeding
expression threshold (>200)
in HeLa and/or HepG2

True miRNAs exceeding
expression threshold (>200)
in HeLa and/or HepG2

Sensitivity/specificity according
to 5-fold boosting validation

3 10 511 98/98 1229 45 88.95/84.16
5 9947 97/98 1171 44 85.96/88.02
7 8866 97/98 1017 43 82.56/90.96
9 7450 95/98 872 42 78.41/93.99
11 5862 94/98 667 41 73.44/96.13
13 3906 87/98 439 38 68.18/97.60
15 2498 82/98 290 36 62.26/98.39
17 1467 75/98 154 32 56.00/98.78
19 819 64/98 85 29 49.15/99.15
21 421 64/98 38 28 43.18/99.48
23 230 60/98 17 26 37.18/99.82
25 116 52/98 8 22 31.66/99.96
27 62 45/98 3 22 25.85/100.00
29 31 40/98 0 20 20.66/100.00
31 16 37/98 0 15 16.39/100.00
33 12 29/98 0 13 12.89/100.00
35 4 28/98 0 13 10.13/100.00
37 0 21/98 0 11 7.56/100.00
39 0 14/98 0 8 5.09/100.00
41 0 9/98 0 4 3.05/100.00

For each HMM score in the range of 3–41 (first column), the table shows: (a) the number of predicted miRNA precursors (second column); (b) the
number of true precursors included in the predicted list as a function of all true precursors within CAGRs (third column); (c) the number of
predicted candidates (fourth column) and true miRNAs (fifth column) that passed the 200 expression threshold in HeLa and/or HepG2 cells and (d)
the respective sensitivity and specificity values (sixth column). The 421 sequences that were predicted for an HMM threshold of 21 were selected for
further processing, which is tinted grey in the table.

Figure 6. Conservation of all 10511 predicted miRNA candidates (HMM threshold=3) across seven species. (A) Histogram of conserved miRNA
candidates. As evident from the figure, the majority of candidates are more than 50% conserved across the seven species. (B) Distribution of
conserved nucleodites for all candidates along the 104-nt positions of the scanning window. As evident from the figure, there is a large drop in
conservation near the loop (middle area) while positions around the loop are higly conserved in a symmetrical way.
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Northern blot analysis concurred with the tiling array
expression data in all four of the candidates tested. As
shown in Figure 7, all candidates produced specific signals
whose size is within the mature miRNA range (19–27 nt)
while, in some cases, the pre-miRNA was also detected.
Moreover, we found that in all four candidates only one
strand of the predicted precursor produced a specific
signal, further suggesting that our candidates are likely to
be true miRNA precursors.
Blat analysis (38) against the human genome provided

additional supporting evidence for our four miRNA
gene candidates. We found that all candidates are more
than 45% conserved across eight other organisms and are
located within expressed intergenic regions, consistent
with the majority of miRNAs (39,40). Moreover, Blat
search produced 100% identity hits at the level of
20–26 nt in other regions of the genome and secondary
structure prediction for the genomic sequences flanking
these regions resembled that of true miRNA precursors
in five out of nine cases. Since the mature miRNA is the
main unit of regulation for the miRNA gene it may be
more conserved than the rest of the precursor, suggesting
the existence of additional miRNA genes. Blast analysis of
the oligonucleotides concurs with the results from the Blat
search and reveals significant hits in other regions of the
human genome.

Tool comparison

Finally, to assess the prediction accuracy of our tool com-
pared to existing algorithms, we used the four verified
candidates (the predicted precursors) as a query set in
four existing miRNA gene prediction tools. Interestingly,
all of these tools failed to identify our candidates as likely
miRNA genes. MiRRim (19), ProMir II (41) (HMM algo-
rithms) and BayesMiRNAfind (12) (Bayes classifier) were
not able to identify any of our four candidates while
TripletSVM (17) (SVM classifier) predicted one out of
four candidates (candidate 1). It is important to note
that all of these tools are considered as highly accurate
with respect to traditional sensitivity/specificity measures,
which in some cases outperform that of SSCprofiler (24).
However, only for one tool (ProMir II) the authors per-
formed experimental testing of their predicted miRNA
gene candidates.
The most recent of these tools [MiRRim (19)] is similar

to SSCprofiler as it also uses an HMM algorithm that
considers structure and conservation features for

predicting novel miRNA genes. The main conceptual dif-
ferences between the two tools include: (1) the selection of
negative data, (2) the size of the sliding window and (3) the
ability of the user to take into account information from
large scale tiling arrays. A detailed comparison between
the two tools is provided in Supplementary Table S2.
Briefly, for SSCprofiler both positive and negative
sequences are similar in their structure and degree of con-
servation while for miRRim negative data are filtered
according to conservation alone. The latter may bias
results and make the discrimination between the two
classes an easier task, resulting in higher sensitivity/speci-
ficity measures on the training and validation sets but not
necessarily on a blind test set. Moreover, differences in the
scanning procedure utilized by each tool can affect the
total number of predicted miRNA candidates. A larger
window such as the one used in miRRim, translates into
a substantially smaller search space and consequently a
smaller number of genomic regions that could be identi-
fied as potential miRNA genes. Thus, the number of pre-
dicted candidates is not directly comparable between the
two tools. An important advantage of SSCprofiler is that
it allows the user to further filter resulting candidates using
a large scale tilling array data set (21). Such a feature is
not provided in miRRim. Overall, we believe that the dif-
ferences described above, together with the sequential con-
sideration of sequence, structure and conservation at the
nucleotide level offer an important advantage to our tool
compared to existing ones. It is the combination of all of
these factors that allowed SSCprofiler to identify four
novel miRNA gene candidates, which were experimentally
verified but could not be identified by four other predic-
tion tools. We firmly believe that for a computational
tool to prove its value, especially for the biology oriented
user group it is designed for, it must provide a full pre-
diction pipeline from computational identification to
experimental verification for at least a few top scoring
candidates.

DISCUSSION

In this study we introduced an efficient miRNA gene pre-
diction tool (SSCprofiler) which is based on Profile
HMMs and evaluated its performance against a blind
set of recently identified miRNAs as well as via the
experimental verification of four top scoring candidates.

Table 5. Candidate miRNA genes verified by northern blot analysis located in minimal deleted regions involved in human cancers

Candidate Candidate Informationa CAGR Type of cancer Closest miRNA Expression
in HeLa

1 chr9:123327358-123327460 st� chr9:121153509-128793509 Bladder cancer miR-181a; miR-199b 1667.5
2 chr5:148958951-148959053 st� chr5:144121683-156051683 Prostate cancer aggressiveness miR-145/miR-143 363.5
2 chr5:148958951-148959053 st� chr5:148181683-151101683 Myelodysplastic syndrome miR-145/miR-143 363.5
3 chr22:40863894-40863996 st+ chr22:31530000-43583971 Colorectal cancer miR-33a 345.0
3 chr22:40863894-40863996 st+ chr22:31530000-42193557 Astrocytomas miR-33a 345.0
4 chr5:149984684-149984786 st� chr5:144121683-156051683 Prostate cancer aggressiveness miR-145/miR-143 264.0
4 chr5:149984684-149984786 st� chr5:148181683-151101683 Myelodysplastic syndrome miR-145/miR-143 264.0

Positions are according to build 35 (hg17) version of the Human Genome at http://genome.ucsc.edu/
aChromosomal location and strand (st+ or st�).
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Our tool is provided both as a user friendly trainable inter-
face and a web-based scanning application which can be
used for querying genomic regions. In both cases, the user
has a large degree of flexibility in terms of dataset specifi-
cation and parameter tuning.

Our algorithm works by combining sequence, structure
and conservation information taken at the nucleotide level
throughout the length of miRNA precursors. We show

that multiple feature integration is advantageous with
respect to prediction accuracy and argue that this type
of combination is more effective than other approaches.
Incorporation of expression information for predicted
candidates is another important advantage of our tool.
The use of full genome tiling array data (21), which
provide a small-RNA expression map in HeLa and
HepG2 cells at 5-nt resolution, increases the reliability
of model predictions and can be extremely useful
when selecting miRNA gene candidates for experimental
verification due to the tissue specific expression of miRNA
genes.
The effectiveness of SSCprofiler in recognizing human

miRNA genes was demonstrated using a blind set of 219
recently identified human miRNAs from the latest version
of miRBase (version 12). For an HMM threshold of 1,
the method reached a prediction accuracy of 85.84% sim-
ilar to its training/validation performance (91.3% sensitiv-
ity, 78.9% specificity). The tool’s ability to identify novel
miRNA genes located within 350 MB of human cancer-
associated genomic regions (32) was also assessed. For
an HMM threshold of 11 (73.44% sensitivity, 96.13%
specificity) SSCprofiler predicted a total of 5862 novel
miRNA candidates within these regions. Assuming an
analogy between CAGRs and the whole human genome,
SSCprofiler would predict approximately 58 000 new
miRNA genes, in agreement with a recent estimate pro-
vided by the study of Miranda et al. (40). However, it
should be noted that CAGRs are known to contain a
disproportionably large number of miRNAs (over 20%
of all miRNAs in miRBase 12.0); therefore an analogy
between those regions and the entire human genome
might not be valid. Taking into account the high costs
of reagents and the time consuming nature of experimen-
tal procedures we decided to select candidates that were
more likely to be successful. For this reason we used a
higher threshold (HMM score of 21) for which fewer can-
didates were predicted. Of the 421 predicted candidates
only 20 were highly expressed in HeLa cells. Northern
blot analysis of the top four of these candidates verified
the presence of a specific RNA molecule at the miRNA
range (19–27) which strongly suggests the presence of
a small noncoding RNA. In future efforts, additional
predicted candidates for lower HMM thresholds should
be analyzed experimentally in order to obtain a more
accurate cut-off value for reliably predicting novel
miRNAs.
Our findings regarding miRNA gene identification are

in accordance to the uniform system of miRNA annota-
tion (42). The miRNA biogenesis criterion is satisfied by
the prediction of a potential fold-back precursor structure
that contains the �22-nt miRNA sequence within one arm
of the hairpin. The hairpin displays a very low free energy,
as predicted by RNAfold and only one stem of the pre-
cursor shows a northern blot signal. Our candidates do
not contain large internal loops or bulges, particularly
large asymmetric bulges and all fall within the miRNA
precursor range of �60–100 nt reported in animals.
Phylogenetic conservation of the whole miRNA precursor
sequence for all four candidates across seven other organ-
isms is also observed. The miRNA expression criterion is

Figure 7. Northern blot analysis shows a specific signal for all 4
miRNA gene candidates. The let7 probe hybridizes on multiple mem-
bers of the let7 miRNA gene family, accounting for the three bands
shown on the reference membrane. The membranes labeled 1–4 repre-
sent the miRNA gene candidates predicted by SSCprofiler in the same
order as shown in Table 5. The band patterns of four miRNA gene
candidates resemble those of known miRNAs; displaying a band at the
range of 19–27 nt. The higher signals represent the unprocessed precur-
sors (range �70 nt). Structures for the four miRNA gene candidates as
predicted by RNAfold are also shown. The strand on each precursor
that produces a signal is shown in red.
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also met by our candidates. A distinct �22-nt RNA tran-
script is detected by hybridization to a size-fractionated
RNA sample by northern blot analysis for all four candi-
dates. In addition, expression of �22-nt RNA transcripts
from the active stem region of the candidates is observed
in HeLa cells using tiling arrays. These criteria provide
strong evidence that our top scoring candidates are
likely to be true miRNA precursors and consequently,
that SSCprofiler is a reliable and efficient tool for predict-
ing novel miRNA genes. Interestingly, a comparison study
with other miRNA gene prediction tools reveals that three
out of four of our verified miRNA gene candidates are not
predicted by four other published tools (12,17,19,41). Only
one out of four tools predicted one-fourth of our verified
miRNA candidates (17). This finding highlights the supe-
rior prediction capacity of SSCprofiler and further sub-
stantiates its significance as a miRNA gene prediction
tool. The tool’s availability in both a trainable and a
web-based scanning version can further facilitate its use
as a part of a prediction pipeline for novel miRNA genes,
hence allowing for minimization of time, cost and effort.
An important finding of this work is the identification

of four novel miRNA gene candidates residing within
genomic regions which are implicated in numerous cancers
(CAGRs). Although a detailed experimental characteriza-
tion of the mature miRNA function is pending, these
molecules are likely to play an important role in regulat-
ing carcinogenesis, possibly by acting as ‘oncogenes’ or
‘tumor suppressors’. The CAGRs corresponding to each
miRNA candidate are commonly deleted in various types
of cancers (Table 5). Deletion of a region containing a
miRNA gene prohibits the expression of the functional
miRNA. As a result, gene(s) regulated by this miRNA
will function uncontrollably, a process which may result
in a cascade of events that triggers oncogenesis. Since the
mode of action of mature miRNAs usually results in
downregulation of targeted genes, one possibility is that
our candidates play a tumor suppressor role perhaps by
stopping a major tumorigenic turning point in the cell.
However, since cumulating data support both a negative
and a positive regulatory role for miRNAs (43) it is hard
to predict the effect of these potential miRNAs on their
target genes. Target prediction programs can provide a
starting point for identifying possible target genes for
these candidates, thus providing more insights into their
potential role in specific types of cancer. Towards this
goal, an RNA–RNA duplex prediction algorithm will be
incorporated in future versions of the SSCprofiler. This
can be achieved using programs such as RNAcofold (35)
which calculate secondary structures of two RNA
sequences in the form of a hybrid duplex. This extension
will enable the user to train profile HMMs that can recog-
nize the pairing rules between two hybrid RNA molecules,
thus allowing the prediction of new miRNA–mRNA
interactions that obey similar rules. Our ultimate goal is
to develop a stand alone application which will be able to
predict novel miRNA genes as well as their probable tar-
gets. Such a tool may provide a more concise biological
picture of the pathways and genes regulated by our four
novel miRNA gene candidates. Experimental verification
will ultimately be needed to characterize the production

of a mature miRNA, show that predicted interactions
take place in the system of interest and that functional
interactions are strongly associated with the emergence
of a cancerous phenotype.
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